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Abstract

We consider the problem of using a large unla-
beled sample to boost performance of a learn-
ing algorithm when only a small set of labeled
examples is available. In particular, we con-
sider a problem setting motivated by the task
of learning to classify web pages, in which the
description of each example can be partitioned
into two distinct views. For example, the de-
scription of a web page can be partitioned into
the words occurring on that page, and the words
occurring in hyperlinks that point to that page.
We assume that either view of the example
would be sufficient for learning if we had enough
labeled data, but our goal is to use both views
together to allow inexpensive unlabeled data
to augment a much smaller set of labeled ex-
amples. Specifically, the presence of two dis-
tinct views of each example suggests strategies
in which two learning algorithms are trained
separately on each view, and then each algo-
rithm’s predictions on new unlabeled exam-
ples are used to enlarge the training set of the
other. Our goal in this paper is to provide a
PAC-style analysis for this setting, and, more
broadly, a PAC-style framework for the general
problem of learning from both labeled and un-
labeled data. We also provide empirical results
on real web-page data indicating that this use
of unlabeled examples can lead to significant
improvement of hypotheses in practice.
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1 INTRODUCTION

In many machine learning settings, unlabeled examples
are significantly easier to come by than labeled ones
[4, 15]. One example of this is web-page classification.
Suppose that we want a program to electronically visit
some web site and download all the web pages of interest
to us, such as all the CS faculty member pages, or all
the course home pages at some university [1]. To train
such a system to automatically classify web pages, one
would typically rely on hand labeled web pages. These
labeled examples are fairly expensive to obtain because
they require human effort. In contrast, the web has
hundreds of millions of unlabeled web pages that can be
inexpensively gathered using a web crawler. Therefore,
we would like our learning algorithm to be able to take
as much advantage of the unlabeled data as possible.
This web-page learning problem has an interesting
feature. Each example in this domain can naturally be
described using several different “kinds” of information.
One kind of information about a web page is the text
appearing on the document itself. A second kind of
information is the anchor text attached to hyperlinks
pointing to this page, from other pages on the web.
The two problem characteristics mentioned above
(availability of both labeled and unlabeled data, and
the availability of two different “kinds” of information
about examples) suggest the following learning strat-
egy. Using an initial small set of labeled examples, find
weak predictors based on each kind of information; for
instance, we might find that the phrase “research inter-
ests” on a web page is a weak indicator that the page is
a faculty home page, and we might find that the phrase
“my advisor” on a link is an indicator that the page
being pointed to 1s a faculty page. Then, attempt to
bootstrap from these weak predictors using unlabeled
data. For instance, we could search for pages pointed
to with links having the phrase “my advisor” and use
them as “probably positive” examples to further train a
learning algorithm based on the words on the text page,
and vice-versa. We call this type of bootstrapping co-
training, and it has a close connection to bootstrapping
from incomplete data in the Expectation-Maximization
setting; see, for instance, [5, 13]. The question this raises
is: 1s there any reason to believe co-training will help?
Our goal is to address this question by developing a



PAC-style theoretical framework to better understand
the issues involved in this approach. We also give some
preliminary empirical results on classifying university
web pages (see Section 6) that are encouraging in this
context.

More broadly, the general question of how unlabeled
examples can be used to augment labeled data seems a
slippery one from the point of view of standard PAC as-
sumptions. We address this issue by proposing a notion
of “compatibility” between a data distribution and a
target function (Section 2) and discuss how this relates
to other approaches to combining labeled and unlabeled
data (Section 3).

2 A FORMAL FRAMEWORK

We define the co-training model as follows. We have an
instance space X = X7 X X5, where X; and X, corre-
spond to two different “views” of an example. That is,
each example z is given as a pair (21, z2). We assume
that each view in itself is sufficient for correct classifi-
cation. Specifically, let D be a distribution over X, and
let €1 and C5 be concept classes defined over X; and
Xy, respectively. What we assume is that all labels on
examples with non-zero probability under D are consis-
tent with some target function f; € C7, and are also
consistent with some target function f, € C5. In other
words, if f denotes the combined target concept over the
entire example, then for any example # = (z1, 22) ob-
served with label £, we have f(z) = fi(z1) = fa(z2) = L.
This means in particular that D assigns probability zero
to any example (21, 22) such that fi(x1) # fa(22).

Why might we expect unlabeled data to be useful for
amplifying a small labeled sample in this context? We
can think of this question through the lens of the stan-
dard PAC supervised learning setting as follows. For
a given distribution D over X, we can talk of a target
function f = (f1, f2) € C1 x C3 as being “compatible”
with D if it satisfies the condition that D assigns prob-
ability zero to the set of examples (1, %2) such that
fi(x1) # fa(x2). That is, the pair (f1, f2) is compatible
with D if f1, f», and D are legal together in our frame-
work. Notice that even if Cy and Cy are large concept
classes with high complexity in, say, the VC-dimension
measure, for a given distribution D the set of compati-
ble target concepts might be much simpler and smaller.
Thus, one might hope to be able to use unlabeled ex-
amples to gain a better sense of which target concepts
are compatible, yielding information that could reduce
the number of labeled examples needed by a learning
algorithm. In general, we might hope to have a trade-
off between the number of unlabeled examples and the
number of labeled examples needed.

To illustrate this idea, suppose that X; = X, =
{0,1}" and €y = C3 = “conjunctions over {0,1}".”
Say that it is known that the first coordinate is rele-
vant to the target concept f (i.e., if the first coordinate
of 1 is 0, then fi(#1) = 0 since f; is a conjunction).
Then, any unlabeled example (1, 23) such that the first
coordinate of #; is zero can be used to produce a (la-
beled) negative example x2 of fa. Of course, if D is an

Figure 1: Graphs Gp and Gs. Edges represent examples
with non-zero probability under D. Solid edges represent
examples observed in some finite sample S. Notice that
given our assumptions, even without seeing any labels the
learning algorithm can deduce that any two examples be-
longing to the same connected component in Gg must
have the same classification.

“unhelpful” distribution, such as one that has nonzero
probability only on pairs where x; = x5, then this may
give no useful information about f;. However, if #; and
zo are not so tightly correlated, then perhaps it does.
For instance, suppose D is such that x5 is conditionally
independent of #; given the classification. In that case,
given that z; has its first component set to 0, z» is now
a random negative example of fo, which could be quite
useful. We explore a generalization of this idea in Sec-
tion b, where we show that any weak hypothesis can
be boosted from unlabeled data if D has such a condi-
tional independence property and if the target class is
learnable with random classification noise.

In terms of other PAC-style models, we can think of
our setting as somewhat in between the uniform distri-
bution model, in which the distribution is particularly
neutral, and teacher models [6, 8] in which examples are
being supplied by a helpful oracle.

2.1 A BIPARTITE GRAPH
REPRESENTATION

One way to look at the co-training problem is to view
the distribution D as a weighted bipartite graph, which
we write as Gp (X1, X2), or just Gp if X7 and X, are
clear from context. The left-hand side of G'p has one
node for each point in X; and the right-hand side has
one node for each point in X3. There is an edge (21, #2)
if and only if the example (z1,#2) has non-zero prob-
ability under D. We give this edge a weight equal to
its probability. For convenience, remove any vertex of
degree 0, corresponding to those views having zero prob-
ability. See Figure 1.

In this representation, the “compatible” concepts in
C are exactly those corresponding to a partition of this
graph with no cross-edges. One could also reasonably
define the extent to which a partition is not compati-
ble as the weight of the cut it induces in G. In other



words, the degree of compatibility of a target function
f = (f1, f2) with a distribution D could be defined as
a number 0 < p < 1 where p = 1 — Prp[(z1,22) :
fi(z1) # fa(2z2)]. In this paper, we assume full compat-
ibility (p = 1).

Given a set of unlabeled examples S, we can simi-
larly define a graph (G5 as the bipartite graph having
one edge (z1,x3) for each (x1,x2) € S. Notice that
given our assumptions, any two examples belonging to
the same connected component in S must have the same
classification. For instance, two web pages with the ex-
act same content (the same representation in the X3
view) would correspond to two edges with the same left
endpoint and would therefore be required to have the
same label.

3 A HIGH LEVEL VIEW AND
RELATION TO OTHER
APPROACHES

In its most general form, what we are proposing to add
to the PAC model is a notion of compatibility between
a concept and a data distribution. If we then postulate
that the target concept must be compatible with the dis-
tribution given, this allows unlabeled data to reduce the
class C' to the smaller set C” of functions in C' that are
also compatible with what is known about D. (We can
think of this as intersecting C' with a concept class C'p
associated with D, which is partially known through the
unlabeled data observed.) For the co-training scenario,
the specific notion of compatibility given in the previous
section is especially natural; however, one could imag-
ine postulating other forms of compatibility in other
settings.

We now discuss relations between our setting and
other methods that have been used for combining la-
beled and unlabeled data.

One standard approach to learning with missing val-
ues (e.g., such as when some of the labels are unknown)
is the EM algorithm [3]. The EM algorithm is typically
analyzed under the assumption that the data is gener-
ated according to some simple known parametric model.
For instance, a common assumption is that the positive
examples are generated according to an n-dimensional
Gaussian D, centered around the point ¢4, and nega-
tive examples are generated according to Gaussian D_
centered around the point #_, where 8, and f_ are
unknown to the learning algorithm. Examples are gen-
erated by choosing either a positive point from D4 or
a negative point from D_, each with probability 1/2.
In this case, the Bayes-optimal hypothesis is the lin-
ear separator defined by the hyperplane bisecting and
orthogonal to the line segment 6,60_.

This parametric model is less rigid than our “PAC
with compatibility” setting in the sense that it incor-
porates noise: even the Bayes-optimal hypothesis is not
a perfect classifier. On the other hand, it is signifi-
cantly more restrictive in that the underlying probabil-
ity distribution is effectively forced to commit to the
target concept. If we consider the class C' of all lin-

ear separators, then really only two concepts in C' are
“compatible” with the underlying distribution on un-
labeled examples: namely, the Bayes-optimal one and
its negation. In other words, if we knew the underly-
ing distribution, then there are only two possible target
concepts left. Given this view, it is not surprising that
unlabeled data can be so helpful under this set of as-
sumptions. Our proposal of a compatibility function
between a concept and a probability distribution is an
attempt to more broadly consider distributions that do
not completely commit to a target function and yet are
not completely uncommitted either.

A second approach to using unlabeled data, given
by Yarowsky [15] in the context of the “word sense dis-
ambiguation” problem is much closer in spirit to co-
training, and can be nicely viewed in our model. The
problem Yarowsky considers is the following. Many
words have several quite different dictionary definitions.
For instance, “plant” can mean a type of life form or
a factory. Given a text document and an instance of
the word “plant” in it, the goal of the algorithm is to
determine which meaning is intended. Yarowsky [15]
makes use of unlabeled data via the following observa-
tion: within any fixed document, it is highly likely that
all instances of a word like “plant” have the same in-
tended meaning, whichever meaning that happens to be.
He then uses this observation, together with a learning
algorithm that learns to make predictions based on local
context, to achieve good results with only a few labeled
examples and many unlabeled ones.

We can think of Yarowsky’s approach in the context
of co-training as follows. Each example (an instance of
the word “plant”) is described using two distinct rep-
resentations. The first representation is the unique-1D
of the document that the word is in. The second rep-
resentation 1s the local context surrounding the word.
(For instance, in the bipartite graph view, each node
on the left represents a document, and its degree is the
number of instances of “plant” in that document; each
node on the right represents a different local context.)
The assumptions that any two instances of “plant” in
the same document have the same label, and that local
context is also sufficient for determining a word’s mean-
ing, are equivalent to our assumption that all examples
in the same connected component must have the same
classification.

4 ROTE LEARNING

In order to get a feeling for the co-training model, we
consider in this section the simple problem of rote learn-
ing. In particular, we consider the case that ¢, = 2%
and Cy = 2%2, so all partitions consistent with D are
possible, and we have a learning algorithm that simply
outputs “I don’t know” on any example whose label it
cannot deduce from its training data and the compat-
ibility assumption. Let |X;| = |X3| = N, and imagine
that N 1s a “medium-size” number in the sense that
gathering O(N) unlabeled examples is feasible but la-



beling them all is not.! In this case, given just a sin-
gle view (i.e., just the X; portion), we might need to
see Q(N) labeled examples in order to cover a substan-
tial fraction of D. Specifically, the probability that the
(m 4 1)st example has not yet been seen is
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If, for instance, each example has the same probability
under D, our rote-learner will need Q(N) labeled exam-
ples in order to achieve low error.

On the other hand, the two views we have of each
example allow a potentially much smaller number of la-
beled examples to be used if we have a large unlabeled
sample. For instance, suppose at one extreme that our
unlabeled sample contains every edge in the graph Gp
(every example with nonzero probability). In this case,
our rote-learner will be confident about the label of a
new example exactly when it has previously seen a la-
beled example in the same connected component of G'p.
Thus, if the connected components in G'p are ¢q,¢s, .. .,
and have probability mass Py, Ps, .. ., respectively, then
the probability that given m labeled examples, the la-
bel of an (m 4 1)st example cannot be deduced by the
algorithm is just

S - (1)
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For instance, if the graph Gp has only %k connected
components, then we can achieve error ¢ with at most
O(k/¢) examples.

More generally, we can use the two views to achieve
a tradeoff between the number of labeled and unlabeled
examples needed. If we consider the graph Gg (the
graph with one edge for each observed example), we
can see that as we observe more unlabeled examples,
the number of connected components will drop as com-
ponents merge together, until finally they are the same
as the components of G'p. Furthermore, for a given set
S, if we now select a random subset of m of them to la-
bel, the probability that the label of a random (m+1)st
example chosen from the remaining portion of S cannot
be deduced by the algorithm is
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where s; is the number of edges in component ¢; of S.
If m < |5], the above formula is approximately

Sl
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in analogy to Equation 1.

In fact, we can use recent results in the study of ran-
dom graph processes [9] to describe quantitatively how

'To make this more plausible in the context of web pages,
think of 1 as not the document itself but rather some small
set of attributes of the document.

we expect the components in Gs to converge to those of
G'p as we see more unlabeled examples, based on prop-
erties of the distribution D. For a given connected com-
ponent H of G'p, let ag be the value of the minimum
cut of H (the minimum, over all cuts of H, of the sum
of the weights on the edges in the cut). In other words,
a g 1s the probability that a random example will cross
this specific minimum cut. Clearly, for our sample S to
contain a spanning tree of H, and therefore to include
all of H as one component, it must have at least one
edge in that minimum cut. Thus, the expected number
of unlabeled samples needed for this to occur is at least
1/agr. Of course, there are many cuts in H and to have
a spanning tree one must include at least one edge from
every cut. Nonetheless, Karger [9] shows that this is
nearly sufficient as well. Specifically, Theorem 2.1 of [9]
shows that O((log N')/ar) unlabeled samples are suffi-
cient to ensure that a spanning tree is found with high
probability.? So, if « = ming{ag}, then O((log N)/«)
unlabeled samples are sufficient to ensure that the num-
ber of connected components in our sample is equal to
the number in D, minimizing the number of labeled ex-
amples needed.

For instance, suppose N/2 points in X; are posi-
tive and N/2 are negative, and similarly for X5, and
the distribution D is uniform subject to placing zero
probability on illegal examples. In this case, each legal
example has probability p = 2/N2. To reduce the ob-
served graph to two connected components we do not
need to see all O(N?) edges, however. All we need are
two spanning trees. The minimum cut for each compo-
nent has value pN/2, so by Karger’s result, O(N log N)
unlabeled examples suffice. (This simple case can be
analyzed easily from first principles as well.)

More generally, we can bound the number of con-
nected components we expect to see (and thus the num-
ber of labeled examples needed to produce a perfect hy-
pothesis if we imagine the algorithm is allowed to select
which unlabeled examples will be labeled) in terms of
the number of unlabeled examples m,, as follows. For a
given a < 1, consider a greedy process in which any
cut of value less that o in Gp has all its edges re-
moved, and this process is then repeated until no con-
nected component has such a cut. Let Noe (o) be the
number of connected components remaining. If we let
a = clog(N)/my, where ¢ is the constant from Karger’s
theorem, and if m, is large enough so that there are
no singleton components (components having no edges)
remaining after the above process, then Nee(«) is an

2This theorem is in a model in which each edge e in-
dependently appears in the observed graph with probability
mpe, where p. 1s the weight of edge e and m is the ex-
pected number of edges chosen. (Specifically, Karger is con-
cerned with the network reliability problem in which each
edge goes “down” independently with some known probabil-
ity and you want to know the probability that connectivity
is maintained.) However, it is not hard to convert this to the
setting we are concerned with, in which a fixed m samples
are drawn, each independently from the distribution defined
by the pe’s. In fact, Karger in [10] handles this conversion
formally.



upper bound on the expected number of labeled exam-
ples needed to cover all of D. On the other hand, if
we let o = 1/(2my,), then %Ncc(a) is a lower bound
since the above greedy process must have made at most
Nee — 1 cuts, and for each one the expected number of
edges crossing the cut is at most 1/2.

5 LEARNING IN LARGE INPUT
SPACES

In the previous section we saw how co-training could
provide a tradeoff between the number of labeled and
unlabeled examples needed in a setting where |X| is
relatively small and the algorithm is performing rote-
learning. We now move to the more difficult case where
| X is large (e.g., X1 = X2 = {0, 1}") and our goal is to
be polynomial in the description length of the examples
and the target concept.

What we show is that given a conditional indepen-
dence assumption on the distribution D, if the target
class is learnable from random classification noise in the
standard PAC model, then any initial weak predictor
can be boosted to arbitrarily high accuracy using unla-
beled examples only by co-training.

Specifically, we say that target functions f;, f> and
distribution D together satisfy the conditional indepen-
dence assumption if, for any fixed (%1, %2) € X of non-
zero probability,

Pr |:l‘1 = i‘l | o — i‘21|
(x1,22)€ED

= 21 = &1 | falza) = fo(22) |,

Pr [
(x1,22)€ED

and similarly,

Pr |:l‘2 = i‘z | o — i‘11|
(x1,22)€ED

= PI' |:l‘22i‘2 |f1(l‘1):f1(i‘1) .

(x1,22)€ED
In other words, #1 and z4 are conditionally independent
given the label. For instance, we are assuming that the
words on a page P and the words on hyperlinks pointing
to P are conditionally independent given the classifica-
tion of P. This seems to be a somewhat plausible start-
ing point given that the page itself is constructed by a
different user than the one who made the link. On the
other hand, Theorem 1 below can be viewed as showing
why this is not really so plausible after all.?

In order to state the theorem, we define a “weakly-
useful predictor” h of a function f to be a function such
that

®Using our bipartite graph view from Section 2.1, it is
easy to see that for this distribution D, the only “compati-
ble” target functions are the pair (fi1, f2), its negation, and
the all-positive and all-negative functions (assuming D does
not give probability zero to any example). Theorem 1 can be
interpreted as showing how, given access to D and a slight
bias towards (f1, f2), the unlabeled data can be used in poly-
nomial time to discover this fact.

1. Prp {h(x) = 1} > ¢, and

2. Prp [f(x) = 1|h(z) = 1] > Prp [f(x) - 1] te

for some € > 1/poly(n). For example, seeing the word
“handouts” on a web page would be a weakly-useful pre-
dictor that the page is a course homepage if (1) “hand-
outs” appears on a non-negligible fraction of pages, and
(2) the probability a given page is a course homepage
given that “handouts” appears is non-negligibly higher
than the probability without that word. If f i1s unbi-
ased in the sense that Prp(f(z) = 1) = Prp(f(x) =
0) = 1/2, then this is the same as the usual notion of
a weak predictor, namely Prp(h(z) = f(z)) > 1/2+ €.
Otherwise, it is equivalent (assuming that f is not over-
whelmingly often 0 or 1) to the statement that & is
a weak predictor over the distribution “normalized” to
make f appear unbiased.

Theorem 1 If Cy is learnable in the PAC model with
classification noise, and if the conditional independence
assumption is satisfied, then (Cy, Cy) is learnable in the
Co-training model from unlabeled data only, given an
initial weakly-useful predictor h(x1).

Thus, for instance, the conditional independence as-
sumption implies that any concept class learnable in the
Statistical Query model [11] is learnable from unlabeled
data and an initial weakly-useful predictor.

Before proving the theorem, it will be convenient to
define a variation on the standard classification noise
model where the noise rate on positive examples may
be different from the noise rate on negative examples.
Specifically, let (e, §) classification noise be a setting
in which true positive examples are incorrectly labeled
(independently) with probability «, and true negative
examples are incorrectly labeled (independently) with
probability 4. In this case we have the following simple
lemma:

Lemma 1 If concept class C' is learnable in the classi-
fication noise model, then it is also learnable with (v, )
classification noise so long as o+ 3 < 1 (running time
is polynomial in 1/(1 —a — 3)).

Proof. First, suppose a and 3 are known to the learning
algorithm. Without loss of generality, assume o < .
To learn C' with («, §) noise, simply flip each positive
label to a negative label independently with probability
(8 —a)/(B+ (1 —«)). This results in standard clas-
sification noise with noise rate v = /(5 + (1 — o)) =
B/(28 + €), where e = 1 — (a + 3).

If & and 3 are not known, this can be dealt with in
the usual way. For instance, given a data set S of m
examples of which m, are labeled positive, we can cre-
ate m + 1 hypotheses, where hypothesis ¢ (0 < i < my)
is produced by flipping the labels on ¢ random positive
examples in S and running the classification noise al-
gorithm, and hypothesis j (my < j < m) is produced
by flipping the labels on j random negative examples in
S and then running the algorithm. These hypotheses



can then be evaluated on a separate test set. We expect
at least one hypothesis to be good since the procedure
when « and [ are known can be viewed as a probability
distribution over these m + 1 experiments. W

The (a, 3) classification noise model can be thought
of as a kind of constant-partition classification noise [2].
However, the results in [2] require that each noise rate
be less than 1/2. We will need the stronger statement
presented here, namely that it suffices to assume only
that the sum of « and 3 is less than 1.

Proof of Theorem 1. Let f(x) be the target concept
and p = Prp(f(x) = 1) be the probability that a ran-
dom example from D is positive. Let ¢ = Prp(f(z) =

1lh(z1) = 1) and let ¢ = Prp(h(z1) = 1). So,
Prp [h(xl) —1f(z) = 1]
_ Prp[f( )= 1|h(z1) = ]Prp[ 1]
Prp[f(z) =1]
_ g
= 3 (2)

and

:0} — M (3)

Prp |h(z1) = 1|f(2) T

By the conditional independence assumption, for a ran-
dom example = (z1,®2), h(x1) is independent of x4
given f(x). Thus, if we use h(z1) as a noisy label of
2, then this is equivalent to (e, §)-classification noise,
where &« = 1 — q¢/p and 8 = (1 — ¢)¢/(1 — p) using
equations (2) and (3). The sum of the two noise rates
satisfies

oag 1t d=gc _ _C< q—p)
o= p+ = )

By the assumption that A is a weakly-useful predictor,
we have ¢ > ¢ and ¢ — p > ¢. Therefore, this quantity
is at most 1 —¢?/(p(1 — p)), which is at most 1 — 4¢.
Applying Lemma 1, we have the theorem. N

6 EXPERIMENTS

In order to test the idea of co-training, we applied it to
the problem of learning to classify web pages. This par-
ticular experiment was motivated by a larger research
effort [1] to apply machine learning to the problem of
extracting information from the world wide web.

The data for this experiment* consists of 1051 web
pages collected from Computer Science department web
sites at four universities: Cornell, University of Wash-

ington, University of Wisconsin, and University of Texas.

These pages have been hand labeled into a number of
categories. For our experiments we considered the cat-
egory “course home page” as the target function; thus,
course home pages are the positive examples and all

*This data is available at http://www.cs.cmu.edu/afs/cs/
project/theo-11/www/wwkb/

other pages are negative examples. In this dataset, 22%
of the web pages were course pages.

For each example web page x, we considered z; to
be the bag (multi-set) of words appearing on the web
page, and x» to be the bag of words underlined in all
links pointing into the web page from other pages in
the database. Classifiers were trained separately for x;
and for s, using the naive Bayes algorithm. We will
refer to these as the page-based and the hyperlink-based
classifiers, respectively. This naive Bayes algorithm has
been empirically observed to be successful for a variety
of text-categorization tasks [12].

The co-training algorithm we used is described in
Table 1. Given a set L of labeled examples and a set
U of unlabeled examples, the algorithm first creates a
smaller pool U’ containing u unlabeled examples. It
then iterates the following procedure. First, use L to
train two distinct classifiers: hy and ho. hy 1s a naive
Bayes classifier based only on the x; portion of the in-
stance, and hs is a naive Bayes classifier based only on
the xo portion. Second, allow each of these two clas-
sifiers to examine the unlabeled set U/ and select the
p examples 1t most confidently labels as positive, and
the n examples it most confidently labels negative. We
used p = 1 and n = 3, to match the ratio of positive to
negative examples in the underlying data distribution.
Each example selected in this way is added to L, along
with the label assigned by the classifier that selected it.
Finally, the pool U’ is replenished by drawing 2p + 2n
examples from U at random. In earlier implementations
of Co-training, we allowed iy and hs to select examples
directly from the larger set U, but have obtained bet-
ter results when using a smaller pool U’, presumably
because this forces hy and hy to select examples that
are more representative of the underlying distribution
D that generated U.

Experiments were conducted to determine whether
this co-training algorithm could successfully use the un-
labeled data to outperform standard supervised training
of naive Bayes classifiers. In each experiment, 263 (25%)
of the 1051 web pages were first selected at random as
a test set. The remaining data was used to generate a
labeled set L containing 3 positive and 9 negative ex-
amples drawn at random. The remaining examples that
were not drawn for L were used as the unlabeled pool
U. Five such experiments were conducted using differ-
ent training/test splits, with Co-training parameters set

top=1,n=3 k=30 and u = T75.

To compare Co-training to supervised training, we
trained naive Bayes classifiers that used only the 12 la-
beled training examples in L. We trained a hyperlink-
based classifier and a page-based classifier, just as for
co-training. In addition, we defined a third combined
classifier, based on the outputs from the page-based
and hyperlink-based classifier. In keeping with the naive
Bayes assumption of conditional independence, this com-
bined classifier computes the probability P(c;|z) of class
¢; given the instance # = (1, z2) by multiplying the
probabilities output by the page-based and hyperlink-



Gilven:

e a set U of unlabeled examples

Loop for k iterations:

e a set L of labeled training examples

Create a pool U’ of examples by choosing u examples at random from U

Use L to train a classifier hy that considers only the z; portion of z
Use L to train a classifier hs that considers only the s portion of z
Allow hy to label p positive and n negative examples from U’
Allow hs to label p positive and n negative examples from U’

Add these self-labeled examples to L

Randomly choose 2p + 2n examples from U to replenish U’

Table 1: The Co-Training algorithm. In the experiments reported here both h; and hy were trained using a naive Bayes
algorithm, and algorithm parameters were set top =1, n = 3, k£ = 30 and u = 75.

Page-based classifier

Hyperlink-based classifier

Combined classifier

Supervised training 12.9

12.4 111

Co-training 6.2

11.6 5.0

Table 2: Error rate in percent for classifying web pages as course home pages. The top row shows errors when training
on only the labeled examples. Bottom row shows errors when co-training, using both labeled and unlabeled examples.

based classifiers:
P(cjla) « P(cjler) Plcjlas)

The results of these experiments are summarized in
Table 2. Numbers shown here are the test set error rates
averaged over the five random train/test splits. The
first row of the table shows the test set accuracies for
the three classifiers formed by supervised learning; the
second row shows accuracies for the classifiers formed by
co-training. Note that for this data the default hypoth-
esis that always predicts “negative” achieves an error
rate of 22%. Figure 2 gives a plot of error versus num-
ber of iterations for one of the five runs.

Notice that for all three types of classifiers (hyperlink-
based, page-based, and combined), the co-trained clas-
sifier outperforms the classifier formed by supervised
training. In fact, the page-based and combined classi-
fiers achieve error rates that are half the error achieved
by supervised training. The hyperlink-based classifier is
helped less by co-training. This may be due to the fact
that hyperlinks contain fewer words and are less capable
of expressing an accurate approximation to the target
function.

This experiment involves just one data set and one
target function. Further experiments are needed to de-
termine the general behavior of the co-training algo-
rithm, and to determine what exactly is responsible for
the pattern of behavior observed. However, these re-

sults do indicate that co-training can provide a useful
way of taking advantage of unlabeled data.

7 CONCLUSIONS AND OPEN
QUESTIONS

We have described a model in which unlabeled data can
be used to augment labeled data, based on having two
views (z1, #2) of an example that are redundant but not
completely correlated. Our theoretical model is clearly
an over-simplification of real-world target functions and
distributions. In particular, even for the optimal pair of
functions fi, fo € C1 x €y we would expect to occasion-
ally see inconsistent examples (i.e., examples (21, z2)
such that fi(z1) # fa2(®2)). Nonetheless, it provides a
way of looking at the notion of the “friendliness” of a
distribution (in terms of the components and minimum
cuts) and at how unlabeled examples can potentially
be used to prune away “incompatible” target concepts
to reduce the number of labeled examples needed to
learn. It is an open question to what extent the consis-
tency constraints in the model and the mutual indepen-
dence assumption of Section 5 can be relaxed and still
allow provable results on the utility of co-training from
unlabeled data. The preliminary experimental results
presented suggest that this method of using unlabeled
data has a potential for significant benefits in practice,
though further studies are clearly needed.
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Figure 2: Error versus number of iterations for one run of co-training experiment.

We conjecture that there are many practical learn-
ing problems that fit or approximately fit the co-training
model. For example, consider the problem of learning
to classify segments of television broadcasts [7, 14]. We
might be interested, say, in learning to identify televised
segments containing the US President. Here X; could
be the set of possible video images, X5 the set of pos-
sible audio signals, and X their cross product. Given
a small sample of labeled segments, we might learn a
weakly predictive recognizer hy that spots full-frontal
images of the president’s face, and a recognizer hy that
spots his voice when no background noise is present.
We could then use co-training applied to the large vol-
ume of unlabeled television broadcasts, to improve the
accuracy of both classifiers. Similar problems exist in
many perception learning tasks involving multiple sen-
sors. For example, consider a mobile robot that must
learn to recognize open doorways based on a collection
of vision (X7), sonar (X2), and laser range (X3) sen-
sors. The important structure in the above problems
is that each instance # can be partitioned into subcom-
ponents x;, where the x; are not perfectly correlated,
where each x; can in principle be used on its own to
make the classification, and where a large volume of
unlabeled instances can easily be collected.
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